A mathematical model of O2 transport in the rat outer medulla. I. Model formulation and baseline results.

نویسندگان

  • Jing Chen
  • Anita T Layton
  • Aurélie Edwards
چکیده

The mammalian kidney is particularly vulnerable to hypoperfusion, because the O(2) supply to the renal medulla barely exceeds its O(2) requirements. In this study, we examined the impact of the complex structural organization of the rat outer medulla (OM) on O(2) distribution. We extended the region-based mathematical model of the rat OM developed by Layton and Layton (Am J Physiol Renal Physiol 289: F1346-F1366, 2005) to incorporate the transport of RBCs, Hb, and O(2). We considered basal cellular O(2) consumption and O(2) consumption for active transport of NaCl across medullary thick ascending limb epithelia. Our model predicts that the structural organization of the OM results in significant Po(2) gradients in the axial and radial directions. The segregation of descending vasa recta, the main supply of O(2), at the center and immediate periphery of the vascular bundles gives rise to large radial differences in Po(2) between regions, limits O(2) reabsorption from long descending vasa recta, and helps preserve O(2) delivery to the inner medulla. Under baseline conditions, significantly more O(2) is transferred radially between regions by capillary flow, i.e., advection, than by diffusion. In agreement with experimental observations, our results suggest that 79% of the O(2) supplied to the medulla is consumed in the OM and that medullary thick ascending limbs operate on the brink of hypoxia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CALL FOR PAPERS Mathematical Modeling of Renal Function Impact of nitric oxide-mediated vasodilation on outer medullary NaCl transport and oxygenation

Edwards A, Layton AT. Impact of nitric oxide-mediated vasodilation on outer medullary NaCl transport and oxygenation. Am J Physiol Renal Physiol 303: F907–F917, 2012. First published July 11, 2012; doi:10.1152/ajprenal.00055.2012.—The present study aimed to elucidate the reciprocal interactions between oxygen (O2), nitric oxide (NO), and superoxide (O2 ) and their effects on vascular and tubula...

متن کامل

A mathematical model of the urine concentrating mechanism in the rat renal medulla. I. Formulation and base-case results.

A new, region-based mathematical model of the urine concentrating mechanism of the rat renal medulla was used to investigate the significance of transport and structural properties revealed in anatomic studies. The model simulates preferential interactions among tubules and vessels by representing concentric regions that are centered on a vascular bundle in the outer medulla (OM) and on a colle...

متن کامل

A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. I. Formulation and base-case results.

We have developed a highly detailed mathematical model for the urine concentrating mechanism (UCM) of the rat kidney outer medulla (OM). The model simulates preferential interactions among tubules and vessels by representing four concentric regions that are centered on a vascular bundle; tubules and vessels, or fractions thereof, are assigned to anatomically appropriate regions. Model parameter...

متن کامل

A mathematical model of O2 transport in the rat outer medulla. II. Impact of outer medullary architecture.

we extended the region-based mathematical model of the urine-concentrating mechanism in the rat outer medulla (OM) developed by Layton and Layton (Am J Physiol Renal Physiol 289: F1346-F1366, 2005) to examine the impact of the complex structural organization of the OM on O(2) transport and distribution. In the present study, we investigated the sensitivity of predicted Po(2) profiles to several...

متن کامل

Impact of nitric-oxide-mediated vasodilation and oxidative stress on renal medullary oxygenation: a modeling study.

The goal of this study was to investigate the effects of nitric oxide (NO)-mediated vasodilation in preventing medullary hypoxia, as well as the likely pathways by which superoxide (O2(-)) conversely enhances medullary hypoxia. To do so, we expanded a previously developed mathematical model of solute transport in the renal medulla that accounts for the reciprocal interactions among oxygen (O2),...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 297 2  شماره 

صفحات  -

تاریخ انتشار 2009